## Vibrational spectra of trinitromethane derivatives

V. A. Shlyapochnikov, \* D. V. Levchenkov, and A. B. Kharitonkin

N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation. Fax: +7 (095) 135 5328. E-mail: shva@ioc.ac.ru

Spectroscopic parameters of trinitromethane derivatives  $RC(NO_2)_3$  (R = F, Cl, Br, I, NC, NF<sub>2</sub>, N<sub>3</sub>) were determined. Vibrational frequencies and modes were calculated and the assignment of experimental spectra was performed. Spectral features due to the mutual influence of the  $C(NO_2)_3$  group and other atomic groups and particular atoms were revealed.

**Key words:** trinitromethane derivatives, *ab initio* quantum-chemical calculations, density functional calculations, force fields, vibrational spectra, normal coordinate analysis.

The problem of mutual influence of atoms and atomic groups in molecules belongs to fundamental chemical problems. Such an influence is most pronounced in the case of particular groups, e.g., the  $-C(NO_2)_3$  group. In early studies on  $\alpha$ -halo derivatives of trinitromethane and alkyl halides it has been shown that the properties of the Hal atoms in these molecules are significantly different. This gave an impetus to further studies on the chemical and physicochemical properties of compounds containing trinitromethyl group. Among the physicochemical methods used, considerable attention was given to spectroscopic methods.

However, experimental data available in the literature are sometimes fragmentary despite considerable efforts of researchers. This precludes unambiguous and reliable interpretation of all frequencies of the trinitromethyl group and neighboring atomic groups and establishment of common interrelations between the spectral changes due to the mutual influence of molecular fragments of compounds in question.

The main goals of this work were to rigorously interpret the spectra of trinitromethane derivatives,  $RC(NO_2)_3$ , based on the potentialities of modern vibrational spectroscopy and to reveal spectral features characterizing mutual influence of the  $-C(NO_2)_3$  group and different atoms and atomic groups. In addition, we report and analyze complete experimental spectra of  $RC(NO_2)_3$  (R = F, Cl, Br, I, NC, NF<sub>2</sub>, N<sub>3</sub>) compounds, for which we also performed quantum-chemical calculations of force fields and molecular spectra.\*

## **Experimental**

The most part of the experimental spectra of the molecules under study has been reported earlier. A number of complete IR and Raman spectra are first presented in this work. Infrared spectra were recorded on M-80 and IVS-113W spectrometers and Raman spectra were recorded on Ramanor HG-2S and

Ramanor U-1000 spectrometers with Ar lasers as excitation sources.

Quantum-chemical calculations of the molecules under study were carried out using the density functional theory (DFT) approach with the B3LYP exchange-correlation functional, 6-311+G(d,p) basis set (as a rule), and GAUSSIAN-94 program package. In some instances, other computational procedures and basis sets were used. Normal coordinate analyses were performed using the NCA program. To provide the possibility of comparing the structural and spectroscopic parameters, quantum-chemical calculations of methane derivatives RCH<sub>3</sub> (R = F, Cl, Br, I, NC, NF<sub>2</sub>, N<sub>3</sub>) were also performed.

## **Results and Discussion**

The experimental data for all the molecules under study, except for NCC(NO<sub>2</sub>)<sub>3</sub>, the calculated frequencies, and the potential energy distribution (PED) over vibrations are listed in Tables 1—7. Figure 1 presents the diagrams of contributions to the vibrational modes taking several arbitrarily chosen vibrational frequencies of the FC(NO<sub>2</sub>)<sub>3</sub> molecule as examples. In Fig. 1, the relative values of normalized  $(-1 \le x \le +1)$  vibrational modes are plotted as ordinates and the chemical bonds and bond angles in the molecule (in an arbitrary way), as abscissas. For clarity, the points on the diagram are connected by lines. This type of graphical presentation of the contributions to vibrational modes seems to be first used. For long, it has been common practice to represent these contributions in the form of huge tables; however, this makes the understanding of the character of intramolecular motions difficult. Presumably, that is why modern spectroscopic studies present no such information.

The experimental IR and Raman spectra of all the trinitromethane derivatives studied are similar\*. The most intense IR bands are observed at ~1600, ~1300,

<sup>\*</sup> The results of structural studies have been reported earlier.<sup>5</sup>

<sup>\*</sup> Here, we do not consider the results obtained for the  $Hg[C(NO_2)_3]$  molecule. Its spectra are also similar to those of the trinitromethane derivatives in question.

Table 1. Experimental spectra of FC(NO<sub>2</sub>)<sub>3</sub> and those calculated by the DFT (B3LYP/6-311+G(d,p)) and MP2 methods

| Vibra- | •        | riment            | Calculations       |                                |                                |  |  |  |
|--------|----------|-------------------|--------------------|--------------------------------|--------------------------------|--|--|--|
| tion   | (liquid) | $, v/cm^{-1}$     | B3LYP/             | /6-311+G(d,p)                  | MP2/                           |  |  |  |
|        | IR       | Raman*            | v/cm <sup>-1</sup> | PED (%)**                      | 6-31G**,<br>v/cm <sup>-1</sup> |  |  |  |
| 1      |          | 1631<br>(2; 0.68) | 1695               | 93 NO                          | 1876                           |  |  |  |
| 2      | 1620 vs  | , ,               | 1690               | 89 NO                          | 1876                           |  |  |  |
| 3      |          |                   | 1690               | 90 NO                          | 1874                           |  |  |  |
| 4      | 1355 w   | 1362<br>(5; 0.24) | 1405               | 75 NO; 3 CN                    | 1375                           |  |  |  |
| 5      |          |                   | 1344               | 82 NO                          | 1317                           |  |  |  |
| 6      | 1295 vs  |                   | 1344               | 77 NO                          | 1317                           |  |  |  |
| 7      |          | 1300<br>(5; 0.50) | 1303               | 79 CF                          | 1324                           |  |  |  |
| 8      |          | 1024<br>(4; 0.60) | 979                | 59 CN                          | 1058                           |  |  |  |
| 9      |          | 920<br>(1; dp)    | 979                | 59 CN                          | 1058                           |  |  |  |
| 10     | 855 w    | 859               | 871                | 45 ONO;                        | 853                            |  |  |  |
|        |          | (15; 0.20)        |                    | 18 CN; 9 CNO                   |                                |  |  |  |
| 11     |          | ( ' ) ' ' ' '     | 818                | 54 ONO; 13 CN                  | NO 793                         |  |  |  |
| 12     | 798 vs   | 800<br>(1; 0.75)  | 818                | 50 ONO; 8 CN                   |                                |  |  |  |
| 13     | 710 m    | (1, 01.0)         | 730                | 19 CF; 21 ρ; 12                | τ 723                          |  |  |  |
| 14     |          |                   | 660                | 27 CN; 6 CNO;<br>15 ρ; 8 τ     |                                |  |  |  |
| 15     | 650 m    |                   | 660                | 25 CN; 8 CNO;<br>7 ρ; 10 τ     | 655                            |  |  |  |
| 16     |          | 526<br>(2; 0.24)  | 521                | 5 CF; 12 CN;<br>45 CNO; 6 ρ; 6 | 527                            |  |  |  |
| 17     |          | (2, 0.21)         | 390                | 52 CN; 19 CNC                  |                                |  |  |  |
| 18     |          | 409<br>(4; 0.75)  | 390                | 56 CN; 22 CNC                  |                                |  |  |  |
| 19     |          | 365<br>(2; 0.3)   | 347                | 69 CN; 18 CNC                  | 373                            |  |  |  |
| 20     |          | (2, 0.3)          | 322                | 8 CN; 15 FCN;<br>38 CNO; 16 τ  | 330                            |  |  |  |
| 21     |          | 325               | 322                | 6 CN; 13 FCN;                  | 330                            |  |  |  |
|        |          | (2; 0.75)         | • • • •            | 28 CNO; 18 τ                   |                                |  |  |  |
| 22     |          | 243<br>(1; p)     | 209                | 6 CN; 9 CNO;<br>15 NCN; 20 CN  | 218<br>NO;                     |  |  |  |
| 23     |          |                   | 163                | 18 τ<br>54 NCN                 | 172                            |  |  |  |
| 23     |          | 187 (dp)          | 163                | 54 NCN<br>52 NCN               | 172                            |  |  |  |
| 25     |          | 10/ (up)          | 90                 | 32 NCN<br>90 τ                 | 172<br>79                      |  |  |  |
| 26     |          |                   | 50<br>50           | 90 τ                           | 40                             |  |  |  |
| 27     |          |                   | 50                 | 86 τ                           | 40                             |  |  |  |
| 41     |          |                   | 30                 | 00 1                           | 40                             |  |  |  |

<sup>\*</sup> Figures in parentheses denote the intensity and polarization degree or its notation (p for polarized line and dp for depolarized line), respectively.

and ~800 cm<sup>-1</sup> while the strongest Raman lines are observed at ~1350, ~850, and ~375 cm<sup>-1</sup>. Their positions vary only slightly on going from one compound to another. With few exceptions, weaker bands are grouped together and these groups follow a regular pattern.

Table 2. Experimental spectra of ClC(NO<sub>2</sub>)<sub>3</sub> and those calculated by the DFT (B3LYP/6-311+G(d,p)) method

| Vibra- | Exp     | eriment               | C                  | alculations     |
|--------|---------|-----------------------|--------------------|-----------------|
| tion   | (liquid | ), v/cm <sup>-1</sup> | v/cm <sup>-1</sup> | PED (%)*        |
|        | IR      | Raman**               |                    |                 |
| 1      |         |                       | 1708               | 90 NO           |
| 2      | 1630 vs |                       | 1708               | 78 NO           |
| 3      |         | 1619 (0.72)           | 1702               | 93 NO           |
| 4      |         | 1348 (0.3)            | 1400               | 78 NO           |
| 5      | 1278 vs | 1285                  | 1341               | 79 NO           |
| 6      |         |                       | 1341               | 75 NO           |
| 7      |         | 1005 (0.2)            | 1007               | 49 CCl; 15 CNO  |
| 8      | 976 w   | ()                    | 904                | 56 CN           |
| 9      | 921 w   | 930 (0.8)             | 904                | 55 CN           |
| 10     | 841 w   | 848 (0.1)             | 863                | 4 CCl; 9 CN     |
| 11     | 701 vs  | ,                     | 813                | 49 ONO; 8 CNO   |
| 12     |         |                       | 813                | 50 ONO; 14 CNO  |
| 13     | 645 m   |                       | 659                | 35 CC1          |
| 14     |         |                       | 651                | 35 CN; 13 CNO;  |
|        |         |                       |                    | 8ρ; 8τ          |
| 15     |         |                       | 651                | 31 CN; 11 CNO;  |
|        |         |                       |                    | 5 ρ             |
| 16     |         | 437 (0.33)            | 431                | 37 CCI; 60 CNO  |
| 17     |         | ( , , ,               | 377                | 53 CN; 24 CNO   |
| 18     |         | 400 (0.64)            | 377                | 53 CN; 30 CNO   |
| 19     |         | 364 (0.08)            | 346                | 72 CN; 15 CNO   |
| 20     |         | 355 (0.75)            | 246                | 37 CICN; 16 CN; |
|        |         | ( , , ,               |                    | 9 CNO; 13 τ     |
| 21     |         |                       | 246                | 25 CICN; 14 CN; |
|        |         |                       |                    | 21 τ            |
| 22     |         | 207 (0.75)            | 218                | 21 NCN; 24 τ;   |
| -      |         | ()                    |                    | 14 CNO          |
| 23     |         | 173 (0.83)            | 168                | 49 NCN          |
| 24     |         | (1130)                | 168                | 44 NCN          |
| 25     |         |                       | 102                | 90 τ            |
| 26     |         |                       | 46                 | 89 τ            |
| 27     |         |                       | 46                 | 82 τ            |

<sup>\*</sup> See notes to Table 1.

The intensity of the Raman line at ~375 cm<sup>-1</sup> varies over a rather wide range. However, this cannot be detected by visual inspection and is made evident when performing quantitative measurements. Discussing the influence of the trinitromethyl group on the frequencies of the group R and the C-R stretching vibration frequencies requires reliable identification of the corresponding vibrations. In most cases, this can hardly be done using a set of experimental data, since these vibrations are, as a rule, of low intensity. It is only known that the intensities of the C—H stretching bands for the CH<sub>2</sub> and CH<sub>3</sub> groups neighboring to the trinitromethyl group in the IR spectra of polynitroalkanes are nearly an order of magnitude lower than the corresponding parameters for alkanes.<sup>6</sup> A similar decrease in the frequencies of the N<sub>3</sub> group has also been discussed.8 It seems likely that the decrease in the band intensity is a salient feature of the influence of the

<sup>\*\*</sup> Notations  $\rho$  and  $\tau$  stand for the rocking and torsional vibration, respectively.

<sup>\*\*</sup> Figures in parentheses denote the polarization degree.

**Table 3.** Experimental spectra of  $BrC(NO_2)_3$  and those calculated by the DFT (B3LYP/6-311+G(d,p), B3LYP/3-21G), and MP2 methods\*

| Vibra- | Experime | ent (liquid), v/cm <sup>-1</sup> | B3LYP/      | (6-311+G(d,p)                | B3LYP/3-21G | MP2/3-21G         |
|--------|----------|----------------------------------|-------------|------------------------------|-------------|-------------------|
| tion   | IR       | Raman                            | $v/cm^{-1}$ | PED (%)                      | V,          | /cm <sup>-1</sup> |
| 1      |          |                                  | 1687        | 89 NO                        | 1410        | 1857              |
| 2      | 1616 vs  | 1617 (2; 0.82)                   | 1687        | 88 NO                        | 1410        | 1854              |
| 3      |          |                                  | 1679        | 93 NO                        | 1401        | 1854              |
| 4      | 1348 m   | 1345 (-; 0.17)                   | 1393        | 81 NO                        | 1162        | 1130              |
| 5      | 1290 vs  | 1290 (3; 0.93)                   | 1334        | 82 NO                        | 1105        | 1081              |
| 6      |          |                                  | 1334        | 82 NO                        | 1105        | 1081              |
| 7      | 982 m    | 982 (1; 0.43)                    | 959         | 37 CBr                       | 955         | 985               |
| 8      | 921 m    | 923 (4; 0.91)                    | 893         | 54 CN                        | 839         | 871               |
| 9      | 851 m    | , , ,                            | 893         | 55 CN                        | 839         | 871               |
| 10     | 840 m    | 841 (12; 0.12)                   | 856         | 48 ONO; 18 CNO; 4 CBr        | 759         | 750               |
| 11     | 793 vs   | 790 (1; 0.82)                    | 806         | 50 ONO; 15 CNO               | 717         | 711               |
| 12     |          | , , ,                            | 806         | 48 ONO; 8 CNO                | 717         | 711               |
| 13     | 645 m    | 640 (2; 0.82)                    | 647         | 34 CN; 11 CNO; 8 ρ           | 594         | 600               |
| 14     |          |                                  | 647         | 35 CN; 11 CNO; 12 ρ          | 594         | 600               |
| 15     | 565 s    |                                  | 628         | 28 CBr; 18 ρ                 | 575         | 586               |
| 16     | 445 s    | 394 (3; —)                       | 374         | 51 CN; 33 CNO                | 362         | 380               |
| 17     |          | 375 (5; 0.86)                    | 374         | 55 CN; 29 CNO                | 362         | 380               |
| 18     |          | 345 (20; 0.13)                   | 368         | 27 CBr; 54 CNO               | 348         | 356               |
| 19     |          |                                  | 322         | 27 CBr; 66 CNO               | 316         | 322               |
| 20     |          | 225 (-; 0.96)                    | 212         | 11 CN; 15 BrCN; 17 NCN; 8 CN | O 207       | 212               |
| 21     |          | , , ,                            | 212         | 11 CN; 16 BrCN; 18 NCN; 6 CN | O 207       | 212               |
| 22     |          | 173 (-; 0.87)                    | 195         | 21 NCN; 19 CBr; 15 τ         | 192         | 198               |
| 23     |          | . , , ,                          | 156         | 32 NCN; 14 CBr; 6 τ          | 159         | 162               |
| 24     |          |                                  | 156         | 34 NCN; 20 CBr; 13 τ         | 159         | 162               |
| 25     |          | 110 (-; 0.97)                    | 105         | 87 τ                         | 80          | 56                |
| 26     |          | , , ,                            | 40          | 93 τ                         | 37          | 26                |
| 27     |          |                                  | 40          | 85 τ                         | 37          | 26                |

<sup>\*</sup> See notes to Table 1.

Table 4. Experimental spectra of IC(NO<sub>2</sub>)<sub>3</sub> and those calculated by the DFT (B3LYP/3-21G) and MP2 methods

| Vibra-   | Expe                    | 1             |                         | B3LYP/3-21G |                    | MP2/ Vibra |       |               | B3LYP/3-21G |      | MP2/                         |
|----------|-------------------------|---------------|-------------------------|-------------|--------------------|------------|-------|---------------|-------------|------|------------------------------|
| tion     | (solution), $v/cm^{-1}$ |               | v/cm <sup>-1</sup> PED* |             | 3-21G, tion        | tion       |       |               | $v/cm^{-1}$ | PED* | 3-21G,<br>v/cm <sup>-1</sup> |
|          | IR                      | Raman**       |                         | (%)         | v/cm <sup>-1</sup> |            | IR    | Raman**       | -           | (%)  | V/CIII                       |
| 1        | 1613 vs                 | 1598 m        | 1404                    | 83 NO       | 1849               | 15         |       |               | 559         |      | 573                          |
| 2        |                         |               | 1404                    | 95 NO       | 1845               | 16         | 450 s | 428 w         | 357         |      | 378                          |
| 3        |                         |               | 1392                    | 93 NO       | 1844               | 17         |       | 403 w         | 357         |      | 378                          |
| 4        | 1350 w                  | 1355 w        | 1157                    | 72 NO       | 1128               | 18         |       | 375 s         | 330         |      | 341                          |
| 5        | 1298 vs                 | 1303 w (0.33) | 1100                    | 72 NO       | 1079               | 19         |       | 313 vs (0.33) | 289         |      | 297                          |
| 6        |                         | 1293 m        | 1100                    | 79 NO       | 1079               | 20         |       | 213 m         | 194         |      | 200                          |
| 7        | 950 m                   | 955 w (0.36)  | 907                     | 34 CI       | 945                | 21         |       |               | 194         |      | 200                          |
| 8        |                         | 859 w         | 821                     | 58 CN       | 853                | 22         |       | 160 m         | 175         |      | 183                          |
| 9        | 839 s                   | 850 s (0.25)  | 821                     | 59 CN       | 853                | 23         |       |               | 146         |      | 152                          |
| 10       | 786 vs                  | 788 vw        | 755                     | 9 CN        | 748                | 24         |       |               | 146         |      | 152                          |
| 11       |                         |               | 713                     |             | 710                | 25         |       |               | 83          |      | 62                           |
| 12       |                         | 650 w         | 713                     |             | 710                | 26         |       |               | 38          |      | 32                           |
| 13<br>14 | 650 m<br>607 w          | 609 vw        | 586<br>586              |             | 597<br>597         | 27         |       |               | 38          |      | 32                           |

<sup>\*</sup> Due to low accuracy of calculations, the PED values are listed only for relatively high-frequency vibrations.

trinitromethyl group. This also suggests the necessity of theoretical analysis of the spectra, which is the subject of this study.

We deliberately do not dwell on the accuracy of calculations and do not discuss the mean error, maximum error, etc. Experiments were carried out with

<sup>\*\*</sup> Figures in parentheses denote the polarization degree.

**Table 5.** Experimental spectra of  $F_2NC(NO_2)_3$  and those calculated by the DFT (B3LYP/6-311+G(d,p)) method\*

| Vibra- | Experir | ment, v/cm <sup>-1</sup> |                    | Calculations                               |
|--------|---------|--------------------------|--------------------|--------------------------------------------|
| tion   | IR      | Raman                    | v/cm <sup>-1</sup> | PED (%)                                    |
| 1      |         | 1650 w (0.79)            | 1700               | 86 NO                                      |
| 2      | 1625 vs |                          | 1691               | 86 NO                                      |
| 3      |         | 1620 w (0.76)            | 1676               | 84 NO                                      |
| 4      | 1342 w  | 1348 s (0.16)            | 1396               | 79 NO                                      |
| 5      | 1283 vs | 1277 m (0.79)            | 1332               | 85 NO                                      |
| 6      |         | ` '                      | 1330               | 76 NO                                      |
| 7      | 1098 vw | 1102 w (0.33)            | 1090               | 53 CN(F)                                   |
| 8      | 1035 vw | 1035 m (0.67)            | 999                | 39 CN(O); 12 NO; 7 CNF                     |
| 9      | 972 m   | 980 w (0.64)             | 988                | 34 CN(O); 5 CN(F); 8 NO; 6 CNF             |
| 10     | 920 m   | 920 w (0.68)             | 974                | 13 CN(O); 49 NO                            |
| 11     |         | , ,                      | 905                | 78 NO                                      |
| 12     | 847 m   | 852 vs (0.12)            | 862                | 9 CN(O); 4 NO; 9 CNO; 60 ONO               |
| 13     | 808 vs  | 800 w (dp)               | 821                | 55 ONO; 7 CNO                              |
| 14     | 797 vs  | (1)                      | 815                | 54 ONO; 14 CNO                             |
| 15     |         | 720 vw (0.5)             | 733                | 20 CN(F); 13 CNF; 22 ρ                     |
| 16     |         | 651 w                    | 666                | 25 CN(F); 8 CN(O); 6 NO; 13 ρ              |
| 17     |         |                          | 652                | 20 CN(O); 3 CN(F); 6 CNF; 4 NO; 7 τ; 7 ρ   |
| 18     |         | 550 m (0.5?)             | 545                | 20 CN(O); 7 CN(F); 12 CNF; 7 FNF; 12 CNO   |
| 19     |         | 530 s (0.14)             | 538                | 7 CN(O); 3 CN(F); 15 NO; 12 CNF;           |
|        |         | ()                       |                    | 10 CNO; 10 FNF; 10 CNO                     |
| 20     |         | 420 m (0.76)             | 407                | 38 CN(O); 40 CNO                           |
| 21     |         | 375 w (0.9)              | 374                | 18 CN(O); 56 CNO; 6 CNF                    |
| 22     |         | 353 vs (0.35)            | 338 (?)            | 47 CN(O); 24 CNO                           |
| 23     |         | ( , , , )                | 334                | 54 CN(O); 16 CNF                           |
| 24     |         |                          | 331                | 40 CN(O); 10 CN(F); 17 CNF                 |
| 25     |         | 223 w (0.9)              | 223                | 7 CN(O); 11 N(F)CN(O); 6 ONO; 4 CNF; 7 CNO |
| 26     |         | (313)                    | 204                | 11 NCN; 7 N(F)CN(O); 9 CNO; 9 CNF          |
| 27     |         | ~184 m (0.81)            | 198                | 13 NCN; 10 N(F)CN(O); 7 CNO; 6 CNF; 26 τ   |
| 28     |         | 10.111 (0.01)            | 170                | 13 NCN; 10 N(F)CN(O); 7 CNO; 6 CNF         |
| 29     |         |                          | 153                | 24 τ; 15 N(F)CN(O); 8 NCN                  |
| 30     |         |                          | 116                | 15 $\tau(NO)$ ; 73 $\tau(NF_2)$            |
| 31     |         | 100 w (dp)               | 95                 | $8 \tau(NO)$ ; $3 \tau(NF_2)$              |
| 32     |         | -00 ·· ( <del>u</del> P) | 61                 | $25 \tau(NO)$                              |
| 33     |         |                          | 42                 | 89 τ(NO)                                   |

<sup>\*</sup> See notes to Table 2.

substances in the condensed phase, while calculations were of course performed for free molecules. It is known that frequency shifts due to transition from the gas phase to the condensed phase can be rather large. We believe that solving the frequency assignment problem does not require precise calculations, since usually frequency shifts in the range up to several tens of cm<sup>-1</sup> do not lead to significant changes in the contributions to the vibrational modes and, correspondingly, to the PED.

From this points of view, the agreement between theory and experiment (see Tables 1–6, the results of density functional B3LYP/6-311+G(d,p) calculations)\* may be thought satisfactory. The maximum difference between the calculated and experimental values (~70 cm<sup>-1</sup>) was obtained for the antisymmetric NO

stretching vibrations in the  $BrC(NO_2)_3$  molecule. All other calculated frequencies are in much better agreement with the experimental data. The MP2 method reproduces the experimental values somewhat worse than the DFT approach, since it requires introduction of scale factors of the force field. The results of both MP2 and density functional calculations with the 3-21G basis set were found to be inadequate.

However, this concerns mainly the frequencies of the NO stretching vibrations, whereas all other vibrational frequencies are calculated with reasonable accuracy. Therefore, calculations with the 3-21G basis set in the frequency range below  $1300~\rm cm^{-1}$  are not prohibited (though they should be performed very carefully), which is of great importance in those cases where the use of extended basis sets is impossible (*e.g.*, calculations of the  $\rm IC(NO_2)_3$  molecule).

Thus, the results of DFT (B3LYP) calculations of the contributions to vibrational modes and PED allow

<sup>\*</sup> Calculations of  $CIC(NO_2)_3$  were carried out with the 6-311G(d,p) basis set.

 $\textbf{Table 6.} \ \, \text{Experimental spectra of } N_3C(NO_2)_3 \ \, \text{and those calculated by the DFT } (B3LYP/6-311+G(d,p)) \ \, \text{method}*$ 

| Vibra- | Experin | nent, $v/cm^{-1}$ |                    | Calculations                                                         |
|--------|---------|-------------------|--------------------|----------------------------------------------------------------------|
| tion   | IR      | Raman             | v/cm <sup>-1</sup> | PED (%)                                                              |
| 1      |         |                   | 2307               | 83 N(12)N(13); 18 N(1)N(12)                                          |
| 2      |         | 1650 m (0.63)     | 1689               | 82 NO                                                                |
| 3      | 1635 vs | 1620 m (0.71)     | 1686               | 94 NO                                                                |
| 4      | 1600 s  |                   | 1670               | 93 NO                                                                |
| 5      |         |                   | 1402               | 80 NO                                                                |
| 6      | 1353 w  | 1352 s (0.16)     | 1379               | 46 CN (azide); 41 N(1)N(12)                                          |
| 7      | 1310 vs | , ,               | 1346               | 80 NO                                                                |
| 8      |         | 1300 vs (0.62)    | 1341               | 79 NO                                                                |
| 9      | 1083 m  | 1035 vw (dp)      | 1106               | 34 CN (azide); 31 N(1)N(12)                                          |
| 10     | 1017 m  | 1015 m (0.8)      | 976                | 7 CN (azide); 38 CN (nitrile); 17 CN(1)N(12)                         |
| 11     |         | 963 w (0.52)      | 899                | 51 CN (nitrile)                                                      |
| 12     |         | 935 w             | 863                | 18 CN; 45 ONO; 8 CNO                                                 |
| 13     | 850 s   | 855 vs (0.1)      | 823                | 8 CNO; 48 ONO                                                        |
| 14     | 809 vs  | 809 w (0.57)      | 813                | 14 CNO; 55 ONO                                                       |
| 15     |         | 740 w (0.51)      | 741                | 14 CN (azide); 13 N(1)N(12); 21 CN(1)N(12); 15 NNN                   |
| 16     |         | 640 w (0.82)      | 697                | 9 CN (nitrile); 4 CN(1)N(12); 11 ρ; 6 CNO; 12 τ(NO <sub>2</sub> )    |
| 17     |         | 598 m (0.49)      | 612                | 34 CN (nitrile); 9 CNO; 11 $\tau$ (NNC); 5 $\tau$ (NO <sub>2</sub> ) |
| 18     |         | , ,               | 598                | 11 CN (nitrile); 13 CN(1)N(12); 37 NNN                               |
| 19     |         |                   | 529                | $\tau(NNN)$                                                          |
| 20     |         | 465 vs (0.25)     | 469                | 11 CN (azide); 34 CNO; 26 NNN                                        |
| 21     |         | 410 w (dp)        | 396                | 46 CN (nitrile); 35 CNO                                              |
| 22     |         | 368 vs (0.32)     | 354                | 53 CN (nitro); 13 CNO                                                |
| 23     |         | , ,               | 345                | 65 CN (nitro)                                                        |
| 24     |         |                   | 326                | 27 CNO; 27 τ(NNC)                                                    |
| 25     |         |                   | 316                | 27 CN (nitro); 23 CN(1)N(12); 13 NNN                                 |
| 26     |         | 225 w (0.41)      | 215                | 7 N(1)C(2)N(3); 7 N(3)C(2)N(4); 7 CNO                                |
| 27     |         | 188 m (dp)        | 177                | 32 N (nitrile)C(2)N (nitro); 8 CN(1)N(12); 14 τ(NO)                  |
| 28     |         |                   | 167                | 29 N (nitrile)C(2)N (nitro); 10 τ(NNC)                               |
| 29     |         |                   | 130                | 57 CN(1)N(12); 14 NNN                                                |
| 30     |         |                   | 91                 | 88 τ(NO)                                                             |
| 31     |         |                   | 74                 | 47 τ(NNC); 27 τ(NO)                                                  |
| 32     |         |                   | 61                 | 80 τ(NO); 5 τ(NNN)                                                   |
| 33     |         |                   | 40                 | 92 τ(NO)                                                             |

<sup>\*</sup> See notes to Table 2.

Table 7. Spectral parameters of trinitroacetonitrile obtained from B3LYP/6-311+G(d,p) calculations

| Vibra-<br>tion | v/cm <sup>-1</sup> | PED (%)*                    | Vibra-<br>tion | v/cm <sup>-1</sup> | PED (%)*                         |
|----------------|--------------------|-----------------------------|----------------|--------------------|----------------------------------|
| 1              | 2366               | 88 NC                       | 16             | 669                | 9 CN; 8 NCC; 46 ρ                |
| 2              | 1695               | 94 NO                       | 17             | 468                | 17 CC; 3 CN; 33 CNO; 5 ρ         |
| 3              | 1694               | 90 NO                       | 18             | 441                | 17 CN; 8 NCC; 33 CCN (nitrile)   |
| 4              | 1690               | 92 NO                       | 19             | 441                | 26 CN; 7 NCC; 33 CCN (nitrile)   |
| 5              | 1395               | 81 NO                       | 20             | 365                | 51 CN; 20 CNO; 7 CCN (nitrile)   |
| 6              | 1330               | 84 NO                       | 21             | 364                | 4 CN; 19 CNO; 7 CCN (nitrile)    |
| 7              | 1330               | 80 NO                       | 22             | 340                | 65 CN; 18 CNO                    |
| 8              | 1168               | 54 CC                       | 23             | 206                | 27 NCC; 37 NCN; 11 ρ; 6 CNO      |
| 9              | 909                | 39 CN; 14 NCN; 15 NCC; 10 ρ | 24             | 181                | 53 NCN; 17 CCN (nitrile)         |
| 10             | 909                | 36 CN; 14 NCC; 8 NCC; 14 ρ  | 25             | 181                | 54 NCN; 17 CCN (nitrile)         |
| 11             | 866                | 15 CN; 48 ONO; 8 CNO        | 26             | 140                | 37 NCC; 10 NCN; 33 CCN (nitrile) |
| 12             | 815                | 53 ONO; 7 CNO               | 27             | 140                | 38 NCC; 15 NCN; 33 CCN (nitrile) |
| 13             | 814                | 48 ONO                      | 28             | 95                 | 93 τ                             |
| 14             | 685                | 17 CC; 73 ρ                 | 29             | 49                 | 85 τ                             |
| 15             | 670                | 9 CN; 6 NCC; 59 ρ           | 30             | 47                 | 74 τ                             |

<sup>\*</sup> Notations: N denotes the nitrogen atom of nitro group and N (nitrile) denotes the nitrogen atom of nitrile group.

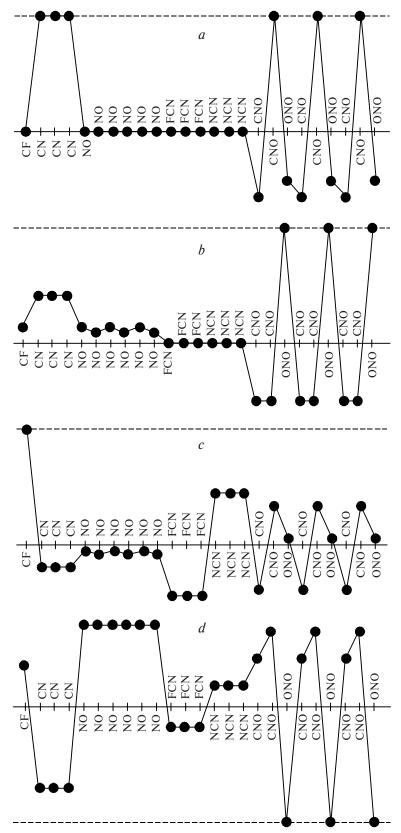



Fig. 1. Diagrams of contributions to vibrational modes of fluorotrinitromethane molecule, calculated for vibrations at v = 373 (a), 871 (b), 1303 (c), and 1405 cm<sup>-1</sup> (d). The relative values of normalized  $(-1 \le x \le +1)$  vibrational modes are plotted as ordinates and the chemical bonds and bond angles in the molecule (in an arbitrary way), as abscissas.

interpretation of all vibrational frequencies of the  $C(NO_2)_3$  group in the  $RC(NO_2)_3$  molecules. All vibrations of this group are rather strongly coupled, which is clearly seen in the diagrams of the contributions to vibrational modes for a number of vibrations of the  $FC(NO_2)_3$  molecule (see Fig. 1). On the other hand, many vibrations of the  $C(NO_2)_3$  group can be thought to be rather pure. Therefore, they relatively slightly depend on both the molecular symmetry and the nature of the substituent R (see the "PED" columns in Tables 1—7).

The effects of interactions manifest themselves in the spectra of compounds under study mainly as changes in the parameters of the C-N stretching vibrations (Table 8). However, it should be noted that only one out of the three C-N stretching vibrations (v(CN)), viz., the high-frequency vibration, can be considered "pure." This is to the greatest extent valid for the FC(NO<sub>2</sub>)<sub>3</sub> molecule (PED ~60%) and to the least extent valid for  $N_3C(NO_2)_3$  (PED ~30%). The other two vibrations v(CN) are even more strongly coupled, especially the low-frequency vibration. Therefore, attribution of these two vibrations to the C-N stretching vibration is rather conventional. It should also be noted that the spectra of symmetrical molecules (a  $C_3$  symmetry) are characterized by coincidence of two frequencies v(CN), while those of unsymmetrical NF<sub>2</sub>C(NO<sub>2</sub>)<sub>3</sub> and N<sub>3</sub>C(NO<sub>2</sub>)<sub>3</sub> molecules are characterized by frequency splitting.

As mentioned above, the high-frequency, so-called C—N stretching vibrations are strongly coupled. On the other hand, the diagonal force constant of the C—N bond ( $F_{\rm CN}$ ) contributes largely to a number of bending vibrations of the molecules under study. For instance, three frequencies of FC(NO<sub>2</sub>)<sub>3</sub> at 390, 390, and 347 cm<sup>-1</sup> are characterized by the PED values of 52, 56, and 69% CN, respectively. Therefore, we have the right to interpret these vibrations rather than those lying in the region  $800-900~{\rm cm}^{-1}$  as the CN "stretching" vibrations. A similar picture is also observed for the spectra of other molecules.

Calculations predict some minor changes in the vibrational frequencies of the C(NO<sub>2</sub>)<sub>3</sub> group in the

**Table 8.** Force constants  $(F_{CN})$  and frequencies (v) of C-N stretching vibrations in compounds  $RC(NO_2)_3$  obtained from B3LYP/6-311+G(d,p) calculations

| <br>R  | $F_{\rm CN}/{ m mdyn}~{ m \AA}^{-1}$ | $v(CN)/cm^{-1}$ |
|--------|--------------------------------------|-----------------|
| F      | 2.66                                 | 979, 979, 871   |
| Cl     | 2.43                                 | 904, 904, 853   |
| Br     | 2.38                                 | 893, 893, 853   |
| I*     | 2.43                                 | 853, 853, 748   |
| $NF_2$ | 2.43-2.57                            | 999, 988, 974   |
| $N_3$  | 2.22—2.77                            | 899, 863, 823   |
| NC     | 2.355                                | 909, 909, 866   |

<sup>\*</sup> Calculated in the B3LYP/3-21G approximation.

series of compounds under study. For instance, the frequency of degenerate, antisymmetric stretching vibration N—O must be higher than that of analogous inphase vibration for the BrC(NO<sub>2</sub>)<sub>3</sub> molecule and lower for other molecules (FC(NO<sub>2</sub>)<sub>3</sub> and ClC(NO<sub>2</sub>)<sub>3</sub>). However, this was not observed experimentally (in the region ~1600 cm<sup>-1</sup>), which is likely due to overlap of the absorption bands.

The trinitromethyl group was found to have a rather strong effect on the vibrations of the group R and, first of all, on the R-C stretching vibration. These frequencies were also assigned based on the calculated contributions to the vibrational modes and PED values (see Tables 1-7). The calculated frequencies of the ClC(NO<sub>2</sub>)<sub>3</sub>, BrC(NO<sub>2</sub>)<sub>3</sub>, and IC(NO<sub>2</sub>)<sub>3</sub> molecules correspond to polarized lines of medium intensity in the Raman spectra. According to calculations, the vibrational frequency v(C-F) of  $FC(NO_2)_3$  must lie near 1300 cm<sup>-1</sup>. However, this spectral region is characteristic of strong vibrations  $v_s(NO_2)$ . Therefore, we failed to single out the v(C-F) vibration using the set of experimental data. Previously,4 it was assigned to a Raman line at 1024 cm<sup>-1</sup>, which has no calculated analogs. Since both B3LYP and MP2 calculations predict the same frequency ( $\sim$ 1300 cm $^{-1}$ ) for the vibration v(C-F), we are apt to accept the calculated value.

The frequency ~950 cm $^{-1}$  in the spectrum of the IC(NO<sub>2</sub>)<sub>3</sub> was assigned to the stretching vibration C-I. Taking into account the accuracy of quantum-chemical calculations of iodotrinitromethane molecule, this assignment should be considered tentative. The stretching vibration C-Hal in the molecules of compounds under study appeared to be relatively pure. The best results were found for the v(C-F) bond in the FC(NO<sub>2</sub>)<sub>3</sub> molecule (PED = 79%). For the v(C-Cl) vibration in ClC(NO<sub>2</sub>)<sub>3</sub> and v(C-Br) vibration in BrC(NO<sub>2</sub>)<sub>3</sub> we obtained that PED = 37%. Calculations also allowed identification of the stretching vibration of the bond nearest to the trinitromethyl group in the NF<sub>2</sub>C(NO<sub>2</sub>)<sub>3</sub>, N<sub>3</sub>C(NO<sub>2</sub>)<sub>3</sub>, and NCC(NO<sub>2</sub>)<sub>3</sub> molecules. The corresponding results are compared in Table 9 with the

**Table 9.** Diagonal force constants (F) and frequencies (v) of stretching vibrations C-R in the  $RC(NO_2)_3$  and  $RCH_3$  molecules

| R               | $F_{\rm CR}$ | /mdyn /          | $Å^{-1}$   | $v(CR)/cm^{-1}$ |                  |            |  |
|-----------------|--------------|------------------|------------|-----------------|------------------|------------|--|
|                 | $RC(NO_2)_3$ | RCH <sub>3</sub> | $\Delta F$ | $RC(NO_2)_3$    | RCH <sub>3</sub> | $\Delta v$ |  |
| F               | 7.20         | 5.39             | 1.81       | 1303            | 1034             | 269        |  |
| C1              | 3.85         | 3.25             | 0.60       | 1007            | 714              | 293        |  |
| Br              | 3.08         | 2.56             | 0.41       | 959             | 576              | 383        |  |
| $I^*$           | 2.57         | 2.19             | 0.38       | 907             | 512              | 395        |  |
| NF <sub>2</sub> | 3.78         | 4.42             | -0.64      | 1090            | 1043             | 47         |  |
| $N_3$           | 6.13         | 4.60             | 1.53       | 1106            | 915              | 191        |  |
| CN              | 5.62         | 5.29             | 0.38       | 1168            | 929              | 239        |  |

<sup>\*</sup> The estimates for  $ICH_3$  and  $IC(NO_2)_3$  were obtained from B3LYP/3-21G calculations.

results of calculations for the RCH<sub>3</sub> molecules. The experimental spectra of the latter were taken from Ref. 9.

Comparison of the frequencies of stretching vibrations C-R in the R-CH<sub>3</sub> and R-C(NO<sub>2</sub>)<sub>3</sub> molecules shows that the trinitromethyl group causes a substantial increase (up to ~400 cm<sup>-1</sup>) in the frequency v(C-R). This is due to changes in the structural parameters of the molecules, first of all to shortening of the C-R bonds. The only exception is the NF<sub>2</sub>C(NO<sub>2</sub>)<sub>3</sub> molecule. Here, the C-N bond in the CNF<sub>2</sub> group is longer than in the NF<sub>2</sub>CH<sub>3</sub> group, but the N-F bond lengths are appreciably different. The  $F_{\rm C-R}$  constants behave analogously (see Table 9). The  $F_{\rm C-F}$  values change to the greatest extent (from 5.39 to 7.20) on going from FCH<sub>3</sub> to FC(NO<sub>2</sub>)<sub>3</sub>.

Thus, the main effect of the interaction between the trinitromethyl group and other neighboring atomic groups and particular atoms is an increase in the force constant of the C-R bond. Comparison of the frequencies of the C-R stretching vibrations in methane and trinitromethane derivatives allows construction of a tabulated dependence (see Table 9), which can be used for tentative estimation of positions of the  $\nu(C-R)$  bands in the spectra of compounds containing the trinitromethyl group. For instance, the C-Hg stretching vibrations in  $Hg[C(NO_2)_3]$  molecule must lie in the region  $800-900~cm^{-1}$ .

This work was supported in part by the Russian Foundation for Basic Research (Project No. 97-03-33712a).

## References

- S. S. Novikov, V. V. Sevost'yanova, and A. A. Fainzil'berg, *Usp. khimii*, 1962, 31, 1417 [*Russ. Chem. Rev.*, 1962, 31 (Engl. Transl.)].
- A. N. Shidlovskaya, Ya. K. Syrkin, S. S. Novikov, A. A. Fainzil'berg, V. V. Sevost'yanova, and V. I. Gulevskaya, *Dokl. Akad. Nauk SSSR [Dokl. Chem.*], 1960, 132, 1376 (in Russian).
- N. I. Sadova, L. V. Vilkov, and T. I. Anfimova, Zh. Strukt. Khim., 1972, 13, 763 [J. Struct. Chem. (USSR), 1972, 13 (Engl. Transl.)].
- 4. S. S. Novikov, G. A. Shvekhgeimer, V. V. Sevost'yanova, and V. A. Shlyapochnikov, *Khimiya alifaticheskikh i alitsiklicheskikh nitrosoedinenii* [*Chemistry of Aliphatic and Alicyclic Nitro Compounds*], Khimiya, Moscow, 1974, 347 (in Russian).
- D. V. Levchenkov, A. B. Kharitonkin, and V. A. Shlyapochnikov, *Izv. Akad. Nauk, Ser. Khim.*, 2001, 368 [Russ. Chem. Bull., Int. Ed., 2001, 50, 385].
- V. A. Shlyapochnikov, Kolebatel'nye spektry alifaticheskikh nitrosoedinenii [Vibrational Spectra of Aliphatic Nitro Compounds], Nauka, Moscow, 1989, 136 pp. (in Russian).
- 7. V. A. Sipachev, J. Mol. Struct., 1985, 121, 143.
- 8. G. Kh. Khisamutdinov, V. I. Slovetskii, Yu. M. Golub, S. A. Shevelev, and A. A. Fainzil'berg, *Izv. Akad. Nauk, Ser. Khim.*, 1997, 338 [*Russ. Chem. Bull.*, 1997, **46**, 324 (Engl. Transl.)].
- L. M. Sverdlov, M. A. Kovner, and E. P. Krainov, Kolebatel'nye spektry mnogoatomnykh molekul [Vibrational Spectra of Polyatomic Molecules], Nauka, Moscow, 1970, 559 pp. (in Russian).

Received November 2, 2000; in revised form December 25, 2000